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Universality of Quantum Critical Dynamics in a Planar Optical Parametric Oscillator
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We analyze the critical quantum fluctuations in a coherently driven planar optical parametric oscillator.
We show that the presence of transverse modes combined with quantum fluctuations changes the behavior
of the ““‘quantum image’’ critical point. This zero-temperature nonequilibrium quantum system has the
same universality class as a finite-temperature magnetic Lifshitz transition.
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The nonequilibrium system consisting of a nonlinear
crystal inside a laser driven Fabry-Perot interferometer,
that couples subharmonic intracavity modes to a harmonic
pump [1], is known as an optical parametric oscillator
(OPO). As well as demonstrating quantum squeezing [2]
and EPR entanglement in numerous quantum information
experiments, this system is widely used in frequency con-
version applications. In single-mode experiments, there is
a critical point in the phase diagram. This is caused by an
increase in the pump intensity, which results in a transition
from a disordered (but quantum squeezed) phase below
threshold, to an ordered phase with a coherent output above
threshold.

When extended to an interferometer with multiple trans-
verse modes, more complex dynamical effects occur due to
diffraction of the down-converted light, which are gov-
erned by the Swift-Hohenberg equation near threshold
[3]. The theory can be quantized [4], and hence includes
quantum fluctuations [5]. Experimentally observable [6,7]
“quantum images’’ are evidence for quantum pattern for-
mation with spatio-temporal correlations in the output
quadratures. Thus, the system can show both spatial critical
fluctuations and nonequilibrium spontaneous pattern for-
mation, which occurs in many fields of physics and other
sciences [8].

In this Letter we apply the theory of finite size scaling to
solve for the critical quantum dynamical properties, and
obtain the universality class this phase-transition corre-
sponds to. We provide a full quantum description of this
nonequilibrium system using the positive P representation,
focusing on the nature of the critical point and critical
fluctuations. This allows us to obtain an analytic solution
for the functional distribution of the large critical fluctua-
tions caused by quantum noise in the down-conversion
process. There is an unexpected universality property in
the solutions. Even though this is a nonequilibrium quan-
tum system of coupled boson fields, we find that in one
quadrature, the quantum fluctuations have exactly the same
behavior as a classical thermal system of fields at a two-
dimensional Lifshitz point, which is a model commonly
used to describe the phase transition to a modulated mag-
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netic phase; in the complementary quadrature there is
strong entanglement.

The unitary evolution of the OPO system can be de-
scribed by the Hamiltonian [5]
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The term Yy is a coupling parameter that depends on the
nonlinear crystal, the frequencies of the field modes are
W, wg = 2w, v is the intracavity group velocity, and An
is the nth photon field. The pump is described by the
amplitude & that could carry a spatial structure—but
here we will assume a constant plane wave input. In
addition, there are damping effects due to output couplings
from the cavity mirrors, which can be well approximated
using as a Markovian master equation for the density
matrix p, so that
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where L,[p]l= [d?X{24,pA} — pATA, — ATA,p] de-
scribes the output coupling from the nth intracavity
mode, with damping rate 7,. This leads to a set of
Fokker-Planck equations, mapped from the quantum den-
sity matrix, using operator representation theory. These are
valid provided boundary terms vanish in the mapping
transformation, which we have checked numerically.
Using the positive P representation, we derive the follow-
ing stochastic equations [1,5,6] in a rotating frame at
frequency wy:
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Here we write the two-dimensional Laplacian causing
diffraction, as V2 = 9%2/9x> + 92/9y>. The complex re-
laxation rates are y; = v;(1 + iA;). The relative detunings
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between the pump laser at 2w;, and the modes supported
by the cavity are Ay = (wg — 2wy )/vo, and A} = (0| —
wr)/v,. The diffraction rate is defined as D =
v?/(27v,w,). The stochastic field &; which describes quan-
tum noise is real and Gaussian, with correlations of
(€1(0) = 0 and (£,(%, Né (X, 1) = 8°(X — X)8(r — 1),

In addition, there are equations that correspond to the
hermitian conjugate fields. As elsewhere in this Letter, we
obtain these by conjugating the constant terms and replac-
ing the stochastic and noise fields according to: A; — A",
& — &F, where &), & are independent real Gaussian
noises. These two noise fields are sufficient to generate
all quantum effects, and are physically caused by the
discrete nature of the photon pairs produced in down-
conversion. The c-number fields A;(7, %), A; (¢, %) are
therefore not complex conjugate, although they are sto-
chastically equivalent in terms of normally ordered opera-
tor moments to photon operator fields A;(z, %), A:r (1, X).
Thus, for example, the photon number density is
(AT DA 7)) = (AF (1 DA 7).

If we remove the transverse modes from the above
equations we return to the well-known single-mode OPO
theory. This system has a quantum critical point—a phase
transition in the infinite volume limit, where the quantum
fluctuations are reduced below the vacuum level for the
squeezed quadrature and become huge for the unsqueezed
quadrature [9]. In a recent analysis [10] of this problem
near the critical point, going beyond the linear theory, we
obtained a scaling law for the squeezing quadrature spec-
trum near threshold, and the parameters for the optimum
squeezing.

The introduction of transverse modes generates a spatial
structure in the subharmonic field with an intensity corre-
lation function known as a ‘“‘quantum image’’ [5], since it is
supported by quantum fluctuations. To treat this problem
analytically, we can perform an adiabatic elimination of
the stable pump mode in the limit of yy > y, and Aj — 0.
That is, we assume that the pump mode has a short relaxa-
tion time.

Neglecting pump diffraction—which is negligible in the
critical regime—we obtain an adiabatic solution for the
pumped field: Ay = (€ — x*A2/2)/7v,, together with a
similar equation for the conjugate term. This solution takes
into account the depletion of the pumping mode that
supplies energy for down-converted light, and leads to an
adiabatic equation for the down-converted field:
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Next, we introduce dimensionless variables 7 = t/t,
and 7 = X/x,, with a corresponding down-converted field
a = xpA;. Because of critical slowing down, the character-
istic length x, and time #, scale as t, = 1/(gy,) and xj =

D/./g., where the effective nonlinear coefficient is g. =
|x1*3/[8Dvyy, 1%, and we will assume that g, < 1. The
dimensionless driving field is & = x&/[y1Y0] = u + i6.
We also introduce appropriately scaled noise fields with
E(1, 7) = x04/1oé (1, X), and the corresponding hermitian
conjugate terms.
With these definitions, we find that:
da 1
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This equation includes both the down-conversion term
proportional to a;, which generates a squeezed signal —
together with a nonlinear saturation term proportional to
—a?af, which limits the down-converted amplitude, and
leads to finite size critical fluctuations.

Critical fluctuations are most usefully analyzed with
scaled quadratures that correspond to experimentally ac-
cessible homodyne detection. These are defined as

X(7, 7) = Jgla (1, F) + af (1, P)],

Y(7,7) = ila] (7, F) — a(7, P)].

(6)

Similarly, there are quadrature noise fields defined
as &7, 7) = (1, 7) + £7(1,F), and  &(1,F) =
i /8L &1 (r, F) — &(7, F)]. The resulting quantum dynami-
cal equations for these signal field quadratures are

X
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oY > 2v2 2
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The linear decay matrix that couples the X and Y quad-
ratures is given by

Yx Yxy — |: (1 - /-L)/gc
Yyx Yy (Al - 0)/\/5
®)

We assume also that close to threshold, and for small
enough detunings, y, = O(1) and y,, = —(6 + 4,)/
J/8c = O(1). We can always choose quadrature phases so
that @ = A, + O(g.). With this choice, Y is mainly
coupled to the X quadrature via the diffraction term, which
couples noise from the critical fluctuations back into the
squeezed quadrature. This implies that & = 1 + O(g,) and
¥y = 2 + 0(,/g.), so that the noise correlations are given
by

((n, PDENT, 7)) = 28(1 — 78 (F — F) + O(g.). (9

We can now perform a second type of adiabatic elimina-
tion, which is valid in a neighborhood of the critical point.

—(0+Ay)/ &
(I+p) }
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This takes into account the fact that the fluctuations in the
X quadrature become very slow near threshold, while the
Y quadrature still responds on fast time scales of order
1/7,. To leading order we can drop terms of O(,/g.) where
g. < 1, and approximate the above equations as follows:
% ==X~ yyY - X = VY + &o
aT ’ (10)
0= —2Y + V2X.

We can therefore eliminate the fast or noncritical quad-
rature variable Y, by writing the steady state solution of the
Y quadrature as Y =~ V?X/2. This produces a reduced
equation for the critical quadrature variable X, which is
valid near threshold:

X _
oT
The above Langevin equation is a Ginzburg-Landau
equation describing the critical quadrature dynamics.
Unlike the usual application of this equation, we note
that the system is a nonequilibrium one. The noise term
¢, is of quantum origin rather than thermal origin, and is
present at zero temperature. It is possible to write an
equivalent functional Fokker-Planck equation for the
probability density P[X],
P _ &
or  0X
and look for the equilibrium distribution in the form
P[X] = Nexp(=V[X]), where V(X) is a potential func-
tional. Making this substitution, the solution for the distri-
bution P[X] is given by
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This expression is exactly the same as the Ginzburg-
Landau free energy of a next nearest neighbor magnetic
interaction, where X plays the role of an order parameter.
That is, we have been able to map this problem into a
soluble magnetic phase-transition equation with a Lifshitz
point [11]. The phase diagram of this optical system should
therefore have two ordered phases, one of them a spatially
modulated phase associated with a pattern formation. This
generic behavior is known to occur in an OPO, from
previous analysis [3].

In this analogy, the “optical paramagnetic phase” cor-
responds to a random photon emission from the OPO
operating below threshold, the ‘“optical ferromagnetic
phase” to a continuum emission uniformly distributed in
the transverse plane parallel to the cavity operating above
threshold. In the ‘‘optical ferromagnetic modulated
phase,” we have a continuum emission but with modulated
quadrature in this plane. At the Lifshitz point, all three
phases coexist.

The line y, = 0 is the line of the second-order phase
transition between order-disorder (coherent-incoherent)

states. In the incoherent phase below threshold, vy, >0,
and in the uniform coherent phase above threshold y, <0,
as expected in the single-mode case. If y, vanishes we
have a Lifshitz point over the line y, = 0, and thus a triple
point characterizing the coexistence of the three phases.
This holds in the case of perfect tuning of the signal field
inside the cavity, so that A; = 0.

In condensed matter physics, the nature of the Lifshitz
point [12,13] is crucially dependent on the order parameter
and spatial dimension. Depending on the dimensionality of
the order parameter, the system may or may not have a true
phase transition in two dimensions. Our system has a one-
dimensional real order parameter and two spatial dimen-
sions with transverse modes, so we expect that this system
should have a true phase transition in the infinite volume
limit at finite temperature. According to the Mermin-
Wagner theorem [14], increasing the order parameter di-
mension (as in type II down-conversion) would result in
phase fluctuations that completely destroy any long range
order. Similarly, reducing the spatial dimension would
result in a continuous transition without a threshold.

A numerical simulation of the Ginzburg-Landau
Egs. (11) with a continuously scanned input shows that
the subharmonic quadrature correlations appear to have a
true critical point in two transverse dimensions. This result
is shown in Fig. 1, which graphs (|X(k)|?) around k = 0, as
a function of the driving field vy, near threshold.

While these large fluctuations are occurring, we note
that there are still strong nonclassical correlations in the
squeezed quadrature. This can be seen by analyzing the
relevant equations to the next order in g., which we also
simplify by using a Gaussian factorization [15]:

Yy y
oo = ~YY + VX = g Y(X?) — 7 X + &, (14)

where ¥,, = v,, + 2¢.(XY). In general, one can always
choose an optimum local oscillator phase so that § = k* +
A, + 2g(XY), in order to minimize the feedback of criti-
cal fluctuations into the squeezed quadrature at a given

~——

k -1 - Y

FIG. 1 (color online). Variance of the quadrature Fourier com-
ponent {|X(k)|?) as a function of y,. Results obtained on a 100 X
100 lattice with a 40 X 40 domain size, using periodic boundary
conditions and averaging over 100 stochastic trajectories.
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FIG. 2. Squeezing spectrum as a function of frequency, with
(solid line) and without (dotted line) nonlinear corrections. The

parameters used are y, = 0.5, g. = 0.01.

transverse momentum k. This leads to Fourier solutions
which show that entanglement [16] between the modes of
momentum k and —k can still occur at small enough wave
vectors, resulting in a universal squeezing spectrum as a
function of frequency:

1 - g.((X*) + v,)

V) =1 = a1+ 6.0 — 7)2P

5)

This result differs from the linearized predictions of
earlier treatments [5]. A graph of the resulting spectrum
in the Gaussian approximation is shown in Fig. 2, com-
pared to the linearized squeezing spectrum, showing large
differences near threshold.

In summary, we have shown that the planar nonequilib-
rium OPO with quantum noise can be mapped to a mag-
netic phase transition in two dimensions. Since the present
case has a scalar, real order parameter it is analogous to the
uniaxial (m = 1) magnetic order parameter case, which is
known to have a thermal equilibrium Lifshitz-point phase-
transition at finite temperature [13]. This demonstrates a
striking resemblance between known thermal equilibrium
phase transitions, and a quantum nonequilibrium system in
which quantum noise replaces thermal noise. In this system
there are also quantum correlations of the emitted photons,
causing quantum squeezing and entanglement. Never-
theless, this highly nonclassical behavior is found only in
the squeezed (Y) quadrature which has no critical slowing

down—and coexists with a rather classical and universal
critical fluctuation field in the conjugate (X) quadrature.
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